
Python Training
Sessions by Tiago MontesWelcoming all programmers

Version 1, Late 2018. Licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.

expression notes

type(obj) Returns the type of obj.

dir(obj) Returns a list with the names of the attributes of obj.

obj.attr The value of the attribute attr on object obj.

help(obj) Displays interactive help on obj. Hit q to get back to the REPL.

help() Enters interactive help, with a help> prompt.
(example, type modules to get a list of importable modules)

Everything is an object. Objects have a type and attributes.

Sheet of Python

name false / empty examples of other values some useful methods notes

bool False True - Behaves like int 0 and 1, respectively.

int 0 -42
7_654_321
0xBECA

bit_length, to_bytes, from_bytes Unlimited precision. 
Digit grouping with _ is Python 3.6 or later.

float 0.0 4.2
6.626e-34
float('inf')

is_integer, as_integer_ratio IEEE-754 floating points, supported by the
underlying hardware.

str '' 'hello there'
"it's a nice day"
"""there's a "quote" here"""

count, encode, find, format, index, join,
lower, partition, replace, split,
startswith, strip, upper

Interpolates \n as newline, \t as tab,
\N{name} as a unicode code point, etc.
r-prefixed strings do not interpolate.

tuple () ('single element',)
(42, 'name', True)

count, index Tuples are immutable. Use a trailing
comma to create single element tuples.

list [] [1, 2, 3]
['hello', False, 42]

append, clear, count, extend, index,
insert, pop, remove, reverse, sort

Mutable, contiguous sequences of items.

dict { } {'id': 42, 'name': 'jane'}
{0: 0, 1: 1, 2: 0, 3: 0}

clear, get, items, keys, pop, popitem,
update, values

Maps keys, which must be hashable/
immutable, to values of any type.

set set() {1, 2, 3}
{'h', 'e', 'l', 'o'}

add, clear, discard, intersection,
issubset, pop, remove, union, update

Members must be hashable/immutable.

NoneType None The type only has the None value. - Used often to represent missing or
undefined information.

command result

python Brings up the Python REPL. Exit with EOF, exit() or quit().

python filename.py Runs the Python program in filename.py.

python -i filename.py Runs the Python program in filename.py and, when done, enters
the REPL where the program state can be inspected.

Running Python Builtin Types

Exploring

Immutables bool, int, float, str, bytes, and tuple; bytes are str-like, representing numbers from 0 to 255, used in low-level I/O operations.

Sequences str, bytes, list, and tuple have length, are indexable by position via [from_start] / [-from_end], are sliceable via [start:stop], are iterable.

Containers tuple, list, dict, and set hold references to objects, have length, are iterable, support the in containment operator.

Assignment

statement notes

name = expression name becomes reference to result of expression; no data is copied.

del name Deletes the reference.

a, b = expression Iterates over the result of expression: assigns first value to a,
second to b. Fails if iteration does not produce two values.

a, *b = expression Iterates over the result of expression: assigns first value to a,
remaining zero/more values put in a new list, assigned to b.

At play in imports, function/class definitions and calls, in for loops, comprehensions, and more. name positional args some keyword args returns usage

print zero or more sep and end None print('Python', 3, end='!\n')

input prompt - str with user supplied input, with no trailing \n. name = input('Your name? ')

len obj - int with the length of obj. len('hello') == 5

range stop or start, stop[, step] - Iterable range of int, from start to stop-1, in steps of step. list(range(3)) == [0, 1, 2]

sorted iterable key and reverse New list with items in iterable, sorted by the result of applying the key function to each item.

enumerate iterable start Iterable of (p, i) where p is position and i is each item in iterable. Tracks item "position" in an iterable.

zip one or more iterables - Iterable of (i1, i2, ...) with each in is obtained from each arg. Iterates over multiple iterables in parallel.

Builtin Functions

More, including any, all, min, max, sum, etc. Types are classes and feel like functions: calling them returns an object of the type, based on the passed in arguments.

Working with Files

statement returns

open(fn, mode) Open file, named fn in mode 'r'ead, 'w'rite, 't'ext, 'b'inary.
Use the optional encoding argument when in text mode.

f.read(size) Up to size long str/bytes read from the file. Empty on EOF.

f.write(payload) Count of written str/bytes, from payload, to the file.

Avoid the close method and use the with statement with file objects, instead.

In the Standard Library: pathlib, os/os.path, shutil, zipfile, gzip, bz2, csv, and more.

In the Standard Library: date, time, and datetime in the datetime module, namedtuple, defaultdict, and deque, in the collections module, and more.

In the Standard Library: the operator module has useful key functions for sorted; the itertools module contains powerful utilities to work with iterables.

Python Training
Sessions by Tiago MontesWelcoming all programmers

Version 1, Late 2018. Licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.

code notes

def func(a, b):
 '''doc string'''
 ...

Creates function named func, taking two arguments.
help(func) displays docstring. If the function body
does not explicitly return, calling func returns None.

def func(a, b=None):
 ...

b is an optional argument, assigned to None if omitted
in the call. Avoid mutable default argument values.

def func(*args):
 ...

func accepts arbitrary number of positional argu-
ments; args is a tuple of the passed in arguments.

def func(**kwargs):
 ...

func accepts arbitrary number of keyword arguments;
kwargs is a dict of the passed in name/value pairs.

Call parameters can be passed by position and/or by name. Pass *iterable to expand
it into multiple by-position arguments, pass **mapping to expand it into multiple 
keyword/ by-name arguments.
Functions are objects too: can be referenced and passed around like any other object.

Sheet of Python

Creating Functions

Generators

Iteration works like this all around: iterator obtained first, next called on it until done.

code notes

if expression:
 ...
elif expression:
 ...
else:
 ...

Expressions are evaluated in a boolean context, but do
not need to evaluate to a bool: refer to false / empty
column, in the Builtin Types box, on the other page.
Use zero, one, or more elif clauses. The else clause
is optional.

while expression:
 ...
else:
 ...

Executes repeatedly, as long as expression evaluates to
true, in a boolean context. The continue statement
jumps back to the top, leading to expression evaluation;
break gets out of the loop. The optional else block
runs if the loop terminates without a break statement.

for target in iterable:
 ...
else:
 ...

Iterates over iterable, obtaining one value at a time. The
loop block is run once for each such value, assigned to
target. The loop ends when the iteration ends. The
continue/break statements and the optional else
block work the same way they do in while loops.

Control Flow and Loops

Exception Handling

code notes

class C:
 '''doc string'''

Creates a class named C.

 attr_name = ... Assignments become class attributes.

 def __init__(self, ...):
 ...

Initializer: passed the newly created instance
via self. Normally creates attributes in self.

 def method(self, ...):
 ...

Functions become instance methods: self, a
reference to the instance, auto passed in.

 @property
 def name(self):
 ...

Getting the .name attribute from an instance,
runs this: it's value is whatever is returned.

 @name.setter
 def name(self, value):
 ...

Setting the .name attribute in an instance
runs this, passing in the assigned value. Needs
getter, as above: if missing, .name is read-only.

 def __repr__(self):
 ...

Called by Python to obtain a string represen-
tation of the instance; see also __str__.

 def __eq__(self, other):
 ...

Return whether the instance is equal to other.
Called by Python on the == operator.

 def __add__(self, other):
 ...

Called by Python to add the instance to other,
when the + operator is used.

 def __del__(self):
 ...

Called by Python on finalization. Don't use as
destructor. Use a context manager instead.

Class instances are created by calling the class as if it was a plain function. Arguments to
such calls are passed to the __init__ method, after the auto passed in self.
Function argument capabilities (default values, arbitrary arguments, etc.) usable here.

Static/class methods created with the @staticmethod/@classmethod decorators.

__named__ methods are called by Python: refer to the Python data model document.

Inherit from other classes with a class name(base1, base2, ...) declaration. Use
the super builtin to access base classes and their attributes and methods.

Creating Classes

Comprehensions

code notes

def gen(...):
 ...
 yield expression
 ...

Function definitions that use one or more yield
statements become generator functions.
Calling them returns generator objects.

Generator objects are iterable, and behave like iterators: once iterated, they're done.

expression equivalent code

list comprehension  
[expr for target in iterable if cond]

result = []
for target in iterable:
 if cond:
 result.append(expr)

dict comprehension
{ ke: ve for target in iterable if cond }

result = {}
for target in iterable:
 if cond:
 result[ke] = ve

Comprehensions create objects from iterables. The if clause is optional: when
omitted something like if True is assumed, and no filtering takes place.
Set comprehensions create sets: list comprehension syntax, using { } instead of [].
Generator expressions create generator objects: list comprehensions syntax, using ()
instead of []. Refer to the Generators box, above.

code notes

try:
 ...
except etype as eobj:
 ...
else:
 ...
finally:
 ...

Runs the try block. If an exception of type etype is
raised, runs the associated except block, where eobj is
a reference to the exception object itself (the as eobj
clause is optional). If no exception is raised in the try
block, the else block is run. The finally block runs
last, no matter what. Multiple except blocks can be
used. The else block is optional. The except and
finally blocks are optional, but one must be present.

Exceptions raised outside the try block are not handled. A single except clause
can handle different exceptions when etype is a tuple of different exception types.
Uncaught exceptions generate stack trace outputs towards the standard error,
where the last line that indicates the exception type and message.
Exceptions can be explicitly raised with the raise statement.

Iteration

code notes

iter(obj) Returns an iterator over obj. Fails if obj is not iterable.

next(iterator) Returns the next iteration value tracked by iterator.
Raises StopIteration when the iterator is done.

Manual iteration not often needed: for/comprehensions are enough. Iterators are
created to iterate over iterables: they just go forward and can't be reused once done.

Modules and Packages

code notes

import mod Finds mod.py in sys.path and runs it. When done,
mod is an object where globals in the imported file
(functions, classes, variables, ...) become its attributes.

from mod import name The same as import mod, followed by the equivalent
of name = mod.name and del mod.

Imports are cached: re-importing does not bring in code updates. Imports not only
look for mod.py files, but also for mod/__init__.py, native shared libraries, and others.

